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Controversy remains about how orientation selectivity emerges in simple cells of the
mammalian primary visual cortex. In this paper, we present a computational model of
how the orientation-biased responses of cells in lateral geniculate nucleus (LGN) can con-
tribute to the orientation selectivity in simple cells in cats. We propose that simple cells
are excited by lateral geniculate fields with an orientation-bias and disynaptically inhibited
by unoriented lateral geniculate fields (or biased fields pooled across orientations), both at
approximately the same retinotopic co-ordinates.This interaction, combined with recurrent
cortical excitation and inhibition, helps to create the sharp orientation tuning seen in simple
cell responses. Along with describing orientation selectivity, the model also accounts for
the spatial frequency and length–response functions in simple cells, in normal conditions
as well as under the influence of the GABAA antagonist, bicuculline. In addition, the model
captures the response properties of LGN and simple cells to simultaneous visual stimula-
tion and electrical stimulation of the LGN. We show that the sharp selectivity for stimulus
orientation seen in primary visual cortical cells can be achieved without the excitatory con-
vergence of the LGN input cells with receptive fields along a line in visual space, which
has been a core assumption in classical models of visual cortex. We have also simulated
how the full range of orientations seen in the cortex can emerge from the activity among
broadly tuned channels tuned to a limited number of optimum orientations, just as in the
classical case of coding for color in trichromatic primates.
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1. INTRODUCTION
Understanding the neural representation of a visual scene is a cen-
tral problem in neuroscience. Probably, the most studied aspect
of the neural representation of vision is visual orientation selec-
tivity – OS (for reviews, see Vidyasagar et al., 1996; Sompolinsky
and Shapley, 1997; Ferster and Miller, 2000). Having such neurons
tuned to oriented visual information is important for providing a
sparse, informative representation of the visual scene through the
detection of edges of objects (Grossberg and Mingolla, 1985).

Orientation selective cells were first discovered in primary
visual cortex (V1) of cats and monkeys through the pioneering
studies of Hubel and Wiesel (1962, 1968). Hubel and Wiesel pro-
posed that the response properties of simple cells emerged from
the excitatory convergence of lateral geniculate nucleus (LGN) cells
which have spatially offset, but aligned receptive fields (RFs). Stud-
ies that are taken as evidence for such a convergence model include
demonstrations that recording of just the excitatory postsynaptic
potentials to a cell by intracellular recordings (Ferster, 1986), inac-
tivation of intra-cortical interactions (Ferster et al., 1996; Chung
and Ferster, 1998; Kara et al., 2002) or the molecular blocking of
cortical inhibition (Nelson et al., 1994), all still preserve the OS of
simple cells. Reid and Alonso (1995) observed that LGN and simple
cells showing correlated responses also show an overlap between

the LGN ON or OFF centers and the corresponding ON or OFF
subfields of the simple cell RF, respectively. Combined, these stud-
ies demonstrate that the feed-forward excitatory LGN inputs to a
simple cell can exhibit orientation tuning (OT), but they do not
establish how such selectivity is generated in the excitatory input.

Three common alternatives to the Hubel and Wiesel excitatory
convergence model are that OS emerges from (1) intra-cortical
inhibition (Creutzfeldt et al., 1974; Sillito, 1975; Sillito et al.,
1980; Heggelund, 1981; Crook et al., 1998; Hirsch, 2003; Hirsch
et al., 2003; Teich and Qian, 2006), (2) spatially offset ON and
OFF LGN inputs (Schiller, 1982; Sherk and Horton, 1984; Miller,
1994; Hirsch, 2003; Martinez et al., 2005; Priebe and Ferster,
2005; Ringach, 2007; Westheimer, 2007; Jin et al., 2011), and (3)
sharpening of the orientation-bias of LGN inputs (Vidyasagar and
Urbas, 1982; Vidyasagar, 1984a, 1987; Vidyasagar and Heide, 1984;
Vidyasagar and Siguenza, 1985; Soodak et al., 1987, 1991; Shou and
Leventhal, 1989). This paper centers primarily on the third alter-
native, but also incorporates elements of the other two models as
well. Though most retinal and LGN cells respond well to stimuli of
any arbitrary orientation, the majority give stronger responses to
stimuli of a preferred orientation, especially at higher spatial fre-
quencies (Levick and Thibos, 1980; Vidyasagar and Heide, 1984;
Passaglia et al., 2002; Xu et al., 2002). It has been proposed that
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interactions involving orientation-biased LGN cells could create
the strong OS and spatial frequency (SF) tuning seen in cortex and
that the same mechanisms can also explain the range of length–
response functions observed for different simple cells (Vidyasagar,
1987; Vidyasagar et al., 1996). This paper codifies these ideas in a
computational model that is consistent with current evidence.

2. MATERIALS AND METHODS
We present a computational model where simple cells are excited
by lateral geniculate cells with an orientation-bias and disynap-
tically inhibited by lateral geniculate cells with unoriented RFs
(or biased fields pooled over orientation), both at approximately
the same retinotopic co-ordinates. This interaction, combined
with recurrent cortical excitation and inhibition and a power-
law spike-rate response function is able to qualitatively account
for the full gamut of OT, SF tuning, and length–response func-
tions observed for simple cells and simple-like hypercomplex cells.
Moreover, blocking inhibitory input to the simulated model sim-
ple, or simple-like hypercomplex, cell can account for the observed
effects of iontophoretic application of bicuculline, a gamma-
aminobutyric acid (GABA) antagonist, on OT, SF tuning, and
length–response functions. The model can also describe the effects
of electrical stimulation in the LGN during simultaneous visual
stimulation on the orientation selectivity of LGN and simple cells.
Models based on recurrent cross-orientation excitation and inhi-
bition within the cortex have come to be called the recurrent model
(RM; Teich and Qian, 2006). Therefore we refer to our model as
the anisotropic LGN driven RM (or ALD-RM).

The computational model essentially consists of input, ON-
center LGN cells, oriented excitatory simple cells, oriented
inhibitory simple cells, and unoriented inhibitory cortical cells.
Although for the sake of parsimony we focus only on the ON pro-
jection to cortex, our model is consistent with evidence about the
projection of ON and OFF LGN cells onto cortex (see Discussion).
In the following descriptions we may use the phrases “LGN cell”
and “LGN field” interchangeably, while generally meaning an LGN
field, since a particular RF may be common to as many as 6–20
LGN cells due to the divergence in the retinogeniculate projection
(Friedlander et al., 1981). Since there is good evidence for a robust
convergence of about 10 LGN cells on to a layer IV stellate cell in
the cat striate cortex (Tanaka, 1983; da Costa and Martin, 2009)
and at the same time the excitatory input to a cortical layer IV cell
has been shown to arise largely from just one retinal cell (Lee et al.,
1977), the most parsimonious scheme is that there is an excitatory
convergence from a number of LGN cells with the same RF on to
a single striate stellate cell (Vidyasagar, 1987). Such connectivity
will be preferentially established during development by Hebbian
rules that facilitate the wiring of correlated inputs on to the same
cell.

The feed-forward component of the model is schematized in
Figure 1A. Here, the retinal inputs to ON-center LGN cells are
shown. A weakly anisotropic ON LGN cell then excites the exci-
tatory simple cell while an isotropic ON LGN cell disynaptically
inhibits the excitatory simple cell via an isotropic inhibitory cell
(Hirsch et al., 2003) to create an ON-field within the simple cell
RF. Inhibitory simple cells (Hirsch et al., 2003) also receive LGN
inputs in the same manner. While as explained later in the Sections

FIGURE 1 | (A) Schematic of the feed-forward component of the ALD-RM
model. The input projects to ON-center LGN cells. A weakly anisotropic ON
LGN field provides feed-forward excitation to the excitatory simple cell
while an isotropic ON LGN field provides disynaptic feed-forward inhibition
of the excitatory simple cell via an isotropic inhibitory cell. Inhibitory simple
cells also receive LGN inputs in the same manner. Anisotropic LGN and
simple cells are modeled for the full range of orientation preferences. As
defined in the methods, oriented excitatory and inhibitory simple cells are
recurrently connected across orientation following a “Mexican hat”
weighting profile. (B) LGN RFs, cortical pseudo-RFs and LGN outputs. (i)

The six types of DOG spatial filters which determine the LGN inputs to the
simulated simple cells. Each filter is plotted in two-dimensions and as a
one-dimensional plot through the vertical midline of the filter (indicated by
the dashed line). For simple cell (S1): anisotropic center with a weak
surround (top left) and unoriented center with a stronger surround (top
right). For simple cell (S2): anisotropic center with a weak, narrow surround
(middle left) and unoriented center with a stronger, narrow surround
(middle right). For the simple-like hypercomplex cell (SH): anisotropic center
with a strong surround (bottom left) and isotropic center with a weaker
surround (bottom right). (ii) Pseudo-RFs of the cortical cell inputs
constructed by rectifying their corresponding LGN DOG kernels [shown in
(i)] and linearly combining them with the weights given inTable 1. The top,
middle and bottom rows correspond to the pseudo-RFs of the (S1), (S2),
and (SH) cells, respectively. Normalized polar bar-response plots from (iii) a
simulated orientation-biased ON-center LGN cell with a weak surround and
(iv) a real ON-center LGN cell recorded from a cat (Data adapted from
Vidyasagar and Urbas, 1982).

“Results” and “Discussion,” we believe that orientation is coded by
a combination of only a limited number of broadly tuned channels
at subcortical levels, for the sake of simplicity, we have modeled
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anisotropic LGN and simple cells for the full range of orientation
preferences. An anisotropic LGN cell with a specific orientation
bias provides the seed for the sharp OT seen in the excitatory
simple cell of the corresponding orientation. The sharp tuning
emerges via feed-forward inhibition from LGN (Vidyasagar and
Heide, 1984) and recurrent excitation and inhibition within the
cortex (Bonds, 1989; Somers et al., 1995; McLaughlin et al., 2000;
Allison et al., 2001; Monier et al., 2003; Shapley et al., 2003; Buzás
et al., 2006; Teich and Qian, 2006, 2003). Excitatory simple cells
are recurrently excited by excitatory simple cells of similar orienta-
tions obeying a Gaussian distribution and at the same time receive
inhibition from inhibitory simple cells with a broader Gaussian
distribution of orientation preferences. This sets up a “Mexican
hat” cooperative–competitive process that contributes to a sharp-
ening of the OT. This is also consistent with the concept of how
the strong iso-orientation excitation is prevented from leading to
runaway excitation by strong recurrent iso-orientation inhibition
(Douglas et al., 1991; Vidyasagar et al., 1996) as evidenced by the
strong inhibition in the optimum orientation found in many stud-
ies (Creutzfeldt and Ito, 1968; Ferster, 1986; Douglas et al., 1991).
Inhibitory simple cells are excited and inhibited in a similar way
to the excitatory simple cells. Although here we explicitly model
isotropic LGN cells for computational simplicity, this isotropic
input to the unoriented inhibitory cortical cell (in Figure 1A)
could also be modeled as a pooling of a variety of local weakly
anisotropic LGN cells.

We investigate the responses to different kinds of inputs to ver-
ify that the model produces realistic results. We focus primarily on
constructing two kinds of simple cells at the extremes of what are
observed for length–response functions (Rose, 1977) to demon-
strate that we can account for the full spectrum of simple cell types
from a simple cell with considerable length summation to a simple-
like hypercomplex cell with strong end-stopping. As hypothesized
earlier (Vidyasagar, 1987), to create the two classes of simple cells –
one showing length summation and the other end-stopping, we
primarily vary the degree of surround inhibition at the LGN stage
(see below) within realistic limits as seen in LGN cells (Cleland
et al., 1983). To further explore the parameter space we simulated
two specific simple cells with length summation which we refer to
as simple cells S1 and S2.

All simulations were done in MatLab (Mathworks, Natick, MA,
USA) on a grid system containing 3.2 GHz CPUs and 4 GB RAM
per CPU.

2.1. INPUT
Three kinds of oriented inputs were simulated: (1) a moving sinu-
soidal grating, (2) a static bar, and (3) a moving Gabor patch. All
inputs were simulated for a total of 1000 ms with a time step of
1 ms. Intensity was defined within the range 0–1. The image size
was 303 arc min by 303 arc min with a spatial step size of 1 arc min.
The moving sinusoidal grating was made to fill the LGN RF and
was defined as follows:

I (x , y , t ) = 0.5 + 0.5 cos(κx x + κy y + ωt ) (1)

where I is the image intensity at position (x, y) and time t. The SF
parameters are dependent on stimulus orientation, θ s, as follows:

κx = κ cos θ s and κy = κ sin θ s. The temporal frequency (TF) was
kept fixed at ω/(2π) = 2 Hz and the SF parameter, κ , took on the
following values κ/(2π) = 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6,
0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2, 3 cycles per degree (CPD).

The static bar was defined to have a bar width of 8 arc min and
bar lengths of 0.16˚, 0.25˚, 0.33˚, 0.41˚, 0.50˚, 0.66˚, 0.83˚, 1.00˚,
1.16˚, 1.33˚, 1.50˚, 1.66˚, 1.83˚, 2.00˚, 2.33˚, 2.66˚, 3.0˚, 3.33˚, 3.75˚,
4.16˚, 4.36˚, 4.58˚, 4.78˚, 5.00˚ were used for the simulation. The
background intensity was set to 0 and the bar intensity was set
to 1. Bars were centered at the middle of the LGN RF and dis-
played from t = 0 ms until t = 400 ms. To obtain bars of arbitrary
orientation we created a vertically oriented bar and rotated it using
nearest-neighbor interpolation.

The moving Gabor patch was centered in the middle of the
LGN RF and defined by the following expression:

I (x , y , t ) = exp

(
x2 + y2

σ 2
G

) [
0.5 + 0.5 cos(κx x + κy y + ωt )

]
(2)

The same parameter values for TF and SF from the grating
were used for the Gabor. In addition, the SD of the multiplicative
Gaussian was set to σ G = 15 arc min in order to better map the
center response of the LGN cells (as compared to the full-field
gratings).

2.2. ON-CENTER LGN CELLS
Lateral geniculate nucleus cells were modeled as difference of
Gaussian (DOG) filters (Soodak et al., 1987, 1991; Troyer et al.,
1998; Teich and Qian, 2006) in space and as transient filters (Chen
et al., 2001; Teich and Qian, 2006) in time. We simulated 18
anisotropic LGN cells with response biases to orientations evenly
covering the range of −90˚ to 90˚, as well as a single isotropic
LGN cell. We denote the response of the oriented LGN cells by
Lo(θ), where θ corresponds to the preferred orientation, and the
response of the unoriented LGN cell by Lu. All cells were spa-
tially centered at the center of the input stimulus. The isotropic RF
was created using an isotropic excitatory center and an isotropic
inhibitory surround. The anisotropic LGN RFs were created by
using an anisotropic excitatory center and an isotropic inhibitory
surround (Soodak et al., 1991).

The response of a given LGN cell, L (i.e., Lo or Lu), was defined
as the half-wave rectification of the convolution of the input with
the space–time LGN filter, F :

L = [F ∗ I ]+ + S, (3)

where the space–time filter, F = DT, is composed of the DOG spa-
tial filter, D, and a temporal filter, T, and the spontaneous rate
is given by S. Given that we were only interested in LGN cells
positioned at the center of the visual stimulus, the full spatial con-
volution in Eq. 3 did not need to be calculated. The DOG spatial
filter was defined as:

D(x , y) = A exp

(
x2

c2
h

+ y2

c2
v

)
− B exp

(
x2

s2
h

+ y2

s2
v

)
(4)
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where A and B are scaling constants. The parameters ch and cv are
the horizontal and vertical SD of the excitatory center Gaussian,
respectively, in units of arc min. The parameters sh and sv are the
horizontal and vertical SD of the inhibitory surround Gaussian,
respectively, also in units of arc min. To obtain LGN cells with
response biases to specific orientations we simply took the DOG
filter with a vertically biased anisotropic center and rotated it to
the desired orientation using nearest-neighbor interpolation.

The temporal filter was defined as (Teich and Qian, 2006):

T (t ) = t

τ 2
exp

(
− t

τ

)
cos(ωt t + φ) (5)

where τ is the response time constant,ωt is the temporal frequency,
and φ is the temporal phase.

2.3. SIMPLE CELLS
Simple cells are modeled as being excited by an LGN field with
orientation bias and disynaptically inhibited by an unoriented cor-
tical field driven by an unoriented LGN cell. Moreover, the simple
cells are recurrently connected and influenced by cross-orientation
excitation and inhibition which is mediated via oriented excitatory
and inhibitory cells. The membrane potential, V e/i(θ), of each ori-
ented excitatory (e) or inhibitory (i) cortical cell with orientation
preference θ was updated according to the following differential
equation (Carandini and Ringach, 1997; Teich and Qian, 2006):

τmdVe/i(θ)
/

dt = −Ve/i(θ)+ Vo(θ)− Vu + Vc(e/i)(θ)− Vs(e/i)(θ),

(6)
where τm is the membrane time constant and V o, V u, V c(e/i),
and V s(e/i) are the synaptic potentials generated by the feed-
forward orientation-biased LGN cell, the disynaptic feed-forward
inhibition driven by the unoriented LGN cell, and the recurrent
excitatory and inhibitory cortical inputs, respectively. These four
terms are described by the following Eqs 7–11. The synaptic poten-
tial contribution from the feed-forward orientation-biased LGN
cell is defined as:

Vo(θ) = Wo(e/i)Lo(θ), (7)

where Lo is the response of the anisotropic LGN cell with the same
preferred orientation θ as the cortical cell and W o(e/i) is the con-
nection weight between the oriented LGN cell and the excitatory
(e) or inhibitory (i) simple cell. The synaptic potential contri-
bution from the unoriented inhibitory cortical cell is defined as:

Vu = Wu(e/i)Cu, (8)

where W u(e/i) is the connection weight between the unoriented
inhibitory cortical cell and the excitatory (e) or inhibitory (i) sim-
ple cell, and the response of the unoriented inhibitory cortical cell,
Cu, is driven by the feed-forward unoriented LGN cell as follows:

Cu = Lu. (9)

The synaptic potential contributions from the excitatory and
inhibitory oriented cortical simple cells is defined as:

Vc(e/i) = Wc(e/i)

π/2∫
−π/2

G(θ − θ ′, σe)Re(Ve(θ
′))dθ ′, (10)

and

Vs(e/i) = Ws(e/i)

π/2∫
−π/2

G(θ − θ ′, σi)Ri(Vi(θ
′))dθ ′, (11)

respectively. Where W ce and W se are the connection weights from
the excitatory-to-excitatory simple cells and the inhibitory-to-
excitatory simple cells, respectively. While W ci and W si are the
connection weights from the excitatory-to-inhibitory simple cells
and the inhibitory-to-inhibitory simple cells, respectively. The
cross-orientation connectivity kernel, G(θ , σ ), is given by the
following Gaussian expression:

G(θ , σ) = 1√
2πσ 2

exp

(−θ2

σ 2

)
, (12)

where σ corresponds to the SD. The connections from an excita-
tory cell to any cell were constrained by the excitatory SD, σ e. The
connections from an inhibitory cell to any cell were constrained by
the inhibitory SD, σ i. The net recurrent interaction of these exci-
tatory and inhibitory connections forms a preferred orientation
difference function with a “Mexican hat” profile (Somers et al.,
1995; Teich and Qian, 2006).

The excitatory and inhibitory membrane-potential-to-firing-
rate output functions in Eqs 10 and 11, Re(V e(θ)) and Ri(V i(θ)),
both obey (Carandini and Ringach, 1997; Teich and Qian, 2003;
Finn et al., 2007):

Re/i = α([Ve/i − βe/i]+)p , (13)

where α corresponds to a gain factor, p is a power exponent, and
βe and β i represent thresholds for the excitatory and inhibitory
cells, respectively. The exponent p and its value have been taken
from Finn et al. (2007). They showed with an “excitatory con-
vergence” model that a power-law combined with a threshold
dependent on the statistics of the membrane potential, which in
turn depends on contrast, could account for cortical orientation
tuning and contrast invariance. The exponent p is used to scale
responses appropriately for the level of contrast and the thresh-
old ensures sharp tuning and contrast invariance through the
“tip of the iceberg effect.” Here for an alternative feed-forward
input, we integrate these features with cross-orientation cooper-
ation and competition for completeness. We do not consider a
contrast-dependent threshold.

The differential equations defined by Eq. 6 were numerically
integrated using Euler’s method with a time step of 1 ms from
t = 0,. . .,1000 ms. As mentioned above, to create the two simple
cell classes of interest (simple cells with length summation and
simple-like hypercomplex cells with end-stopping) we varied the
degree of surround inhibition at the LGN stage. To create a sim-
ple cell with length summation we simulated orientation-biased
LGN cells with a weak surround and the unoriented LGN cell
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with a stronger surround. To create a hypercomplex simple cell
with strong end-stopping we simulated orientation-biased LGN
cells with a strong surround and the unoriented LGN cell with a
weaker surround. How these LGN cell types combine to produce
the simple cell responses is illustrated in the results.

2.4. ELECTRICAL STIMULATION OF THE LGN
Recently, electrical stimulation of the LGN has been used to silence
cortex during visual stimulation in order to see spikes produced
only by the feed-forward inputs to V1 layer four cells (Kara et al.,
2002; Viswanathan et al., 2011). For optimally timed electrical
stimulation, the cortex becomes suppressed and therefore very
few spikes are evoked even during visual stimulation. Although
the biophysical details of how electrical stimulation of the LGN
suppresses striate cortex is unclear, it is known that stimulation
of the LGN or its afferents projecting to cortex causes a brief
excitatory phase just after electrical stimulation, followed by a
long inhibitory phase (Berman et al., 1991; Kara et al., 2002).
Such response properties mean that stimulation with pulses in the
frequency range of 8–12 Hz causes suppression of cortex which
increases with the magnitude of the stimulation current. It has
also been shown that electrical stimulation of the optic nerve pro-
duces similar responses in LGN cells although the inhibitory phase
appears to be shorter than is observed in cortex (Bloomfield and
Sherman, 1988; Berman et al., 1991). Nevertheless, the inhibitory
phase in LGN is long enough such that stimulation at 7.75 Hz in
the LGN also causes suppression of the LGN response to visual
stimulation (Viswanathan et al., 2011). To simulate these effects of
electrical stimulation in the LGN, we add such responses with long
inhibitory phases to the membrane potentials of the LGN at times
when electrical stimulation occurs with an interstimulus interval
of 129 ms (Viswanathan et al., 2011). This effectively means that
we assume the electrical stimulation of the LGN to be activating
both principal cells and inhibitory interneurons of the LGN. The
influence of electrical stimulation is described by the convolution
of the time series of electrical stimulation events, �(t ), and the
electrical stimulation temporal response function, T E(t ):

E = �∗TE. (14)

The time series of electrical stimulation events is given by

�(t ) =
∑

n

δ(t − n), (15)

where n indexes the stimulation event and  = 129 ms is the
period between electrical stimulations. The electrical stimulation
temporal response function, T E(t ), obeys the same form as the
visual stimulus response function for the LGN (Eq. 5) such that

TE(t ) = �ET (t |τE, ωtE, φE), (16)

where the parameter �E is a scaling factor which is reflective of
the magnitude of injected electrical current, the function T (.) is
given by Eq. 5, and the other parameters are the same as defined
for Eq. 5. These are, τE the response time constant, ωtE, the tem-
poral frequency, and, φE, the temporal phase. Parameter values

were selected that produced response waveforms for LGN that
had brief initial excitatory phases followed by a long inhibitory
phase in order to capture the shape of observed responses to elec-
trical stimulation (Bloomfield and Sherman, 1988). The influence
of LGN electrical stimulation on LGN is included by modifying
Eq. 3 to be:

L = [
F∗I + E

]+ + S. (17)

During electrical stimulation the spontaneous rates, S, were
reduced by 80%, which is roughly consistent with the physiological
data obtained by Viswanathan et al. (2011).

To quantify the differences in responses of the LGN and cortex
to electrical stimulation during the presentation of oriented bars,
the circular variance (CV) statistic is used as a metric of orientation
selectivity. CV takes on high values for cells with weak orientation
preference and low values for cells that are sharply tuned. CV is
defined as follows (Ringach et al., 2002):

CV = 1 −

∣∣∣∣∣∣∣
∑
k

rk exp(i2θk)∑
k

rk

∣∣∣∣∣∣∣ , (18)

where rk is the response to a stimulus of orientation θk and k
indexes the different orientations. The simulations we present
here for electrical stimulation could potentially be extended to
include more biophysical detail in order to capture the complete
response properties of LGN and cortex to electrical stimulation in
the LGN, but that is beyond the scope of this paper. Nevertheless,
the results presented here are expected to hold for more detailed
models.

2.5. PARAMETER VALUES
In Table 1 we provide the parameter values used in all the simula-
tions presented in the results. Parameters were selected such that
firing rates obtained were on par with those observed at contrasts
producing half the maximum response (i.e., C50). LGN parameters
were selected to correspond to those observed at approximately 5˚
eccentricity.

While it is possible to produce more detailed computational
models of the cell types and cortical, laminar and columnar cir-
cuitry involved, our philosophy is to first create relatively simple
models that include the key features and can explain as much
data as possible. The ALD-RM is such a model. Complexity can
be increased incrementally to see what new features emerge or
new data can be explained based on a given increment in the
model.

3. RESULTS
We begin by illustrating the six types of DOG spatial filters imple-
mented for the LGN stage in order to create the simple cells S1 and
S2 with length summation and the simple-like hypercomplex cell,
SH. Figure 1Bi shows these six types of DOG spatial filters, in two-
dimensions and as a one-dimensional plot of the vertical midline
of the filter. Simple cell S1 was excited by the anisotropic cen-
ter with a weak surround (top left) and disynaptically inhibited by
the unoriented center with a stronger surround (top right). Simple
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Table 1 | Model parameter names, symbols, values, and references.

Parameter names Symbol Values Reference

LGN

Center Gaussian weights for the six DOG filters A 2.63 × 10−4 Soodak (1986), Soodak et al. (1987),

Troyer et al. (1998), Teich and Qian (2006)

Surround Gaussian weights for the six DOG filters B S1: 0.08, 0.11, S2: 0.45,

0.32, SH: 0.20, 0.36 (×
10−4)

Soodak (1986), Soodak et al. (1987),

Troyer et al. (1998), Teich and Qian (2006)

Vertical SD of centers for the six DOG filters cv 15 Soodak (1986), Soodak et al. (1987),

Troyer et al. (1998), Teich and Qian (2006)

Horizontal SD of centers of the six DOG filters Ch S1: 9, 15, S2: 9, 15, SH:

9, 15

Soodak (1986), Soodak et al. (1987),

Troyer et al. (1998), Teich and Qian (2006)

Vertical/horizontal SD of surrounds of the six DOG filters sv = sh S1: 59, 65, S2: 37, 37 SH:

65, 69

Soodak (1986), Soodak et al. (1987),

Troyer et al. (1998), Teich and Qian (2006)

Time constant of temporal response τ 16 ms Chen et al. (2001), Teich and Qian (2006)

Temporal frequency of temporal response ωt 4 Hz Chen et al. (2001), Teich and Qian (2006)

Temporal phase of temporal response φ 0.24 rad Chen et al. (2001), Teich and Qian (2006)

Spontaneous rate of the three anisotropic LGN cell types S S1: 10, S2: 10, SH: 7

(spikes/s)

Teich and Qian (2006)

Spontaneous rate of the three isotropic LGN cell types S S1: 14.28, S2: 16.67, SH:

14.73 (spikes/s)

Teich and Qian (2006)

SIMPLE CELLS

Weights for simple cell S1 Woe, Woi, Wue, Wui,

Wce, Wci, Wse, Wsi

0.57, 0.57, 0.40, 0.40,

0.23, 0.23, 0.26, 0.26

Weights for simple cell S2 Woe, Woi, Wue, Wui,

Wce, Wci, Wse, Wsi

0.44, 0.44, 0.27, 0.27,

0.22, 0.17, 0.24, 0.20

Weights for simple-like hypercomplex cell Woe, Woi, Wue, Wui,

Wce, Wci, Wse, Wsi

0.37, 0.37, 0.18, 0.18,

0.39, 0.18, 0.43, 0.21

Time constant of the membrane potential τm 15 ms Teich and Qian (2006)

Gain factor α 6.5 Teich and Qian (2006)

Power exponent P 1.85 Finn et al. (2007)

Input threshold of the oriented excitatory cells βe S1: 1.15, S2: 1.3, SH: 0.5

Input threshold of the oriented inhibitory cells β i 0

SD of the excitatory cross-orientation connectivity σ e 35 Teich and Qian (2006)

SD of the inhibitory cross-orientation connectivity σ i 52 Teich and Qian (2006)

ELECTRICAL STIMULATION

Time constant of stimulation response τE 21 ms Bloomfield and Sherman (1988)

Temporal frequency of stimulation response ωtE 4 Hz Bloomfield and Sherman (1988)

Temporal phase of stimulation response φE 1.14 Bloomfield and Sherman (1988)

Scaling factor of stimulation response �E 6 Bloomfield and Sherman (1988)

S1, S2, and SH correspond to simple cell S1, simple cell S2, and the simple-like hypercomplex cell, respectively.

cell S2 was excited by the anisotropic center with a weak, narrow
surround (middle left) and disynaptically inhibited by the unori-
ented center with a stronger, narrow surround (middle right). A
narrower surround was used for simple cell S2, compared to sim-
ple cell S1, in order to show similar results can be obtained for
different surrounds. The primary difference between simple cells
S1 and S2 is that the response of simple cell S2 saturates earlier for
shorter bar lengths. This is illustrated in subsequent figures. The
simple-like hypercomplex cell with end-stopping (SH) was excited
by the anisotropic center with a strong surround (bottom left) and
disynaptically inhibited by the isotropic center with a weaker sur-
round (bottom right). Figure 1Bii illustrates that if one considers

the cortical RF picture that emerges by subtracting half-wave rec-
tified versions of the unoriented LGN RFs from the half-wave
rectified versions of the orientation-biased LGN RFs shown in
Figure 1Bi, it is apparent that the cortical RFs look much like even
symmetric RFs seen in reverse correlation studies. We refer to the
sensitivity profiles in Figure 1Bii as “pseudo-RFs” of the cortical
cells because they only partly capture the RF structure of the sim-
ulated cells (We revisit this point in the Discussion). If one slightly
jittered the spatial positions of the biased and unoriented LGN
RFs relative to each other it would also be possible to create cor-
tical pseudo-RFs that begin to look more like those with different
spatial phases.
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Figures 1Biii,iv demonstrate that the degree of anisotropy of
the simulated LGN cell RFs used in this study are realistic by com-
paring the most orientation-biased response of an ON-center LGN
cell simulated in this paper (Figure 1Biii) with real data from
an LGN ON-center cell recorded from a cat (Figure 1Biv), data
adapted from Vidyasagar and Urbas (1982). Both figures show the
response to a light narrow bar. The orientation bias (taken to be the
ratio of the response to the preferred orientation and the response
to the orthogonal orientation) is 2.34 and 1.95 for the simulated
cell and the real cell, respectively. The mean orientation-bias seen
in the LGN responses in the cat to narrow bars is 1.99 ± 0.78
for 136 cells (Vidyasagar and Urbas, 1982). The majority of sim-
ulated responses showed orientation bias less than that plotted
in Figure 1Biii indicating that the biases of our simulated LGN
cells are well within the normal range and thus conservative. Shou
and Leventhal (1989) applied circular statistics and ellipse fits to
polar plots of the responses of 705 cat LGN cells that were stimu-
lated with drifting sinusoidal gratings. They found a mean ellipse
axis ratio of 1.27, however, they presented the gratings where the
SF was just below the high SF limit of the unit determined for
the non-optimal orientation. More recently, for drifting gratings
presented at the preferred SF, 41% of 110 LGN cells in the owl
monkey showed orientation bias, and the average bias increased
with increases in SF for 25 cells investigated (Xu et al., 2002). Xu
et al. (2002) however, did not investigate orientation bias at high
spatial frequencies for all 110 cells. Vidyasagar and Heide (1984)
found for grating stimuli that only 2 of 29 LGN cells showed a sig-
nificant orientation bias for low spatial frequencies, whereas the
vast majority of this sample showed significant orientation bias at
high spatial frequencies.

Figure 2 illustrates, using a light-bar stimulus, how the
length–response function of a simple cell with length summa-
tion can emerge from LGN responses as proposed in the meth-
ods. Figures 2A–C correspond to simulations for simple cell S1.
Figure 2A plots the length–response functions of an ON LGN field
with a vertically biased center and a weak isotropic inhibitory sur-
round, for a vertical bar (solid line) and a horizontal bar (dashed
line). Figure 2B plots the length–response functions of an ON
LGN field with an isotropic center and a strong isotropic inhibitory
surround in response to a vertical bar (solid line) and a horizontal
bar (dashed line). Figure 2C plots the length–response functions
of simple cell S1 in response to a vertical bar (solid line) and a hori-
zontal bar (dashed line). This cell is simulated to receive excitation
from an LGN field as in Figure 2A and inhibition from an LGN
field as in Figure 2B. Figure 2D plots the length–response function
of a real simple cell with length summation in response to a vertical
bar. For the responses to a vertical bar it can be seen that for short
bar lengths the input from the biased LGN field to S1 will be inhib-
ited by the unoriented LGN field, but for longer bar lengths the
S1 will receive less and less inhibition (i.e., it will be disinhibited).
This interaction creates the monotonic length–response function
observed for the simple cell with length summation (Rose, 1977).
For the responses to a horizontal bar, the disynaptic inhibition by
the unoriented LGN field, combined with the recurrent inhibi-
tion, nullifies the simple cell response to the bar. Figure 2E plots
the length–response functions of simple cell S2 in response to a
vertical bar (solid line) and a horizontal bar (dashed line). Simple

FIGURE 2 | Length–response functions of simple cells S1 and S2

showing length summation. The plots show simulated length–response
functions of (A) an ON LGN cell with a vertically biased center and a weak
isotropic inhibitory surround, (B) an ON LGN cell with an isotropic center
and a strong isotropic inhibitory surround, and (C) the corresponding
vertically oriented simple cell S1 in response to a vertical bar (solid lines)
and a horizontal bar (dashed lines). (D) The length–response function of a
real simple cell with length summation in response to a bar of the preferred
orientation (Data adapted from Kato et al., 1978). (E) The response of the
vertically oriented simple cell S2 to a vertical bar (solid lines) and a
horizontal bar (dashed lines). In (A–C) and (E) the y -axis represents the
maximum firing rate (spikes/seconds) reached before the bar is switched
off, and the x -axis represents the bar length in degrees. In (D) the y -axis
represents number of spikes recorded per response to a bar (as defined by
Kato et al., 1978).

cell S2 differs from simple cell S1 in that it is influenced by LGN
cells with narrower surrounds leading the length–response func-
tion of simple cell S2 to saturate at a shorter bar length than is
observed for simple cell S1.

Next we simulate the other extreme of simple cell length–
response functions. Figure 3 illustrates, using a light-bar stimulus,
how the length–response function of a simple-like hypercom-
plex cell with end-stopping can emerge from LGN responses as
proposed in the methods. Figure 3A plots the length–response
functions of an ON LGN field with a vertically biased center and a
strong isotropic inhibitory surround, for a vertical bar (solid line)
and a horizontal bar (dashed line). Figure 3B plots the length–
response functions of an ON LGN cell with an isotropic center
and a weak isotropic inhibitory surround, again for a vertical bar
(solid line) and a horizontal bar (dashed line). Figure 3C plots the
length–response functions of the simple-like hypercomplex cell in
response to a vertical bar (solid line) and a horizontal bar (dashed
line). This cell is simulated to receive excitation from an LGN field
as in Figure 3A and inhibition from an LGN field as in Figure 3B.
Figure 3D plots the length–response function of a real simple cell
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FIGURE 3 | Length–response function of the simple-like hypercomplex

cell showing end-stopping. The plots show simulated length–response
functions of (A) an ON LGN cell with a vertically biased center and a strong
isotropic inhibitory surround, (B) an ON LGN cell with an isotropic center
and a weak isotropic inhibitory surround, and (C) the corresponding
vertically oriented simple-like hypercomplex cell with end-stopping in
response to a vertical bar (solid lines) and a horizontal bar (dashed lines). (D)

The length–response function of a real simple-like hypercomplex cell in
response to a bar of the preferred orientation (Data adapted from Kato
et al., 1978). Axes are the same as defined in Figure 2.

with end-stopping in response to a bar of optimum orientation.
For the responses to a vertical bar it can be seen that for short
bar lengths the biased LGN field’s input to the simple-like hyper-
complex cell, SH, will be only slightly inhibited by the unoriented
LGN field, but more importantly for longer bar lengths the corti-
cal cell will exhibit significant inhibition. This interaction creates a
length–response function with a sharp drop-off in response as bar
length increases as is observed for simple-like hypercomplex cells
with end-stopping. For the responses to a horizontal bar, the disy-
naptic inhibition by the unoriented LGN cell, combined with the
recurrent inhibition, nullifies the simple cell response to the bar.

Next we demonstrate for the modeled cell types that we are able
to produce realistic SF-response functions in response to gratings
and Gabor patches. For the simple cells S1 and S2 with length
summation we focus on responses to gratings. For the simple-
like hypercomplex cell with end-stopping, full-field gratings did
not elicit any response as a result of significant inhibition in the
surround. This finding is consistent with recordings from real
simple-like hypercomplex cells. Therefore, in place of gratings, we
probe the SF response of the simple-like hypercomplex cell using
Gabor patches.

In Figure 4 we demonstrate the SF-response functions of sim-
ple cell S1 in response to gratings. Similar curves were obtained
for simple cell S2 but are not shown here. Figure 4A plots the
SF-response functions of an ON LGN cell with a vertically biased
center and a weak isotropic inhibitory surround for a vertical grat-
ing (solid line) and a horizontal grating (dashed line). Figure 4B
plots the SF-response functions of an ON LGN cell with an

FIGURE 4 | Spatial frequency-response function of the simple cell S1

with length summation. The plots show simulated SF-response functions
of (A) an ON LGN cell with a vertically biased center and a weak isotropic
inhibitory surround, (B) an ON LGN cell with an isotropic center and a
strong isotropic inhibitory surround, and (C) the corresponding vertically
oriented simple cell S1 in response to a vertical grating (solid lines) and a
horizontal grating (dashed lines). (D) The SF-response function of a real
simple cell with length summation in response to vertical and horizontal
gratings (Data adapted from Hammond and Pomfrett, 1990). In (A–D) the
y -axis represents the maximum firing rate in spikes/seconds, and the x -axis
represents the SF in cycles per degree (CPD).

isotropic center and a strong isotropic inhibitory surround for
a vertical grating (solid line) and a horizontal grating (dashed
line). Figure 4C plots the SF-response functions of simple cell S1
for a vertical grating (solid line) and a horizontal grating (dashed
line). Figure 4D plots the SF-response functions of a real simple
cell with length summation to vertical and horizontal gratings. It
can be seen that LGN cells generally respond to both low and high
spatial frequencies, but the biased LGN cell has a preference for ver-
tical stimuli at higher spatial frequencies. Thus, when the simple
cell is excited by the biased field and inhibited by the unoriented
field, the simple cell only responds to higher spatial frequencies.

Similar results were obtained for the simple-like hypercomplex
cell with end-stopping in response to Gabor patches of different
SF. These results are shown in Figure 5. Figure 5A plots the SF-
response functions of an ON LGN cell with a vertically biased
center and a strong isotropic inhibitory surround for a vertical
Gabor patch (solid line) and a horizontal Gabor patch (dashed
line). Figure 5B plots the SF-response functions of an ON LGN
cell with an isotropic center and a weak isotropic inhibitory sur-
round to a vertical Gabor patch (solid line) and a horizontal Gabor
patch (dashed line). Figure 5C plots the SF-response functions of
the simple-like hypercomplex cell for a vertical Gabor patch (solid
line) and a horizontal Gabor patch (dashed line). Figure 5D plots
the SF-response function of a real simple-like hypercomplex cell to
a Gabor patch of the preferred orientation. These results are similar
to that observed for the simple cell with length summation except
that the hypercomplex cell produces a weaker response because of
the strong inhibitory surround, especially for longer bars or Gabor
patches.
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FIGURE 5 | Spatial frequency-response function of the simple-like

hypercomplex cell. The plots show simulated SF-response functions of (A)

an ON LGN cell with a vertically biased center and a strong isotropic
inhibitory surround, (B) an ON LGN cell with an isotropic center and a weak
isotropic inhibitory surround, and (C) the corresponding vertically oriented
simple-like hypercomplex cell in response to a vertical Gabor patch (solid
lines) and a horizontal Gabor patch (dashed lines). (D) The SF-response
function of a real simple-like hypercomplex cell in response to a Gabor
patch of the preferred orientation (Data adapted from Kulikowski and
Bishop, 1981). Axes are the same as in Figure 4 except in (D) the y -axis
represents the normalized response to a grating stimulus of limited extent.

Next we demonstrate for the modeled simple cells S1 and S2
and the simple-like hypercomplex cell that we are able to produce
realistic OT curves in response to bars, gratings, or Gabor patches.
As above we show responses of the simple cells with length summa-
tion to gratings and the responses of the simple-like hypercomplex
cell to Gabor patches. First we demonstrate how the sharp OT of
the cell types emerges. In Figure 6 we consider the simulated OT
curve for the case of simple cell S1 in response to a bar 0.5˚ in
length. In Figures 6A–D we see the OT curves of the orientation-
biased LGN field driving the simple cell, the unoriented LGN field
that disynaptically inhibits the simple cell, the feed-forward input
rate received by simple cell S1, and the final response of the sim-
ple cell S1, respectively. The feed-forward input rate results from
the combination of the excitation and the disynaptic inhibition
from LGN. It can be seen that this feed-forward input provides a
more tuned input than due to the orientation-biased LGN field
alone. Recurrent excitation and inhibition within the cortex then
acts to sharpen this input to create a realistic simple cell OT curve.
The same mechanisms give rise to OT of simple cell S2 and the
simple-like hypercomplex cell, SH.

In Figure 7 we show the orientation-tuning curves of simple cell
S1 (Figure 7A) and the simple-like hypercomplex cell (Figure 7B)
in response to bars of different length (see legend in Figure 7).
These OT curves are compared to those of a real simple cell with-
out end-stopping (Figure 7C) and a real simple-like hypercomplex
cell (Figure 7D) in response to bars of different lengths. It can be
seen for the model cells that as bar length increases OT sharpens,

FIGURE 6 | Simulated orientation tuning for simple cell, S1 in response

to a bar 0.5˚ in length. The OT curves are shown for (A) the
orientation-biased LGN field with a weak surround driving the simple cell,
(B) the unoriented LGN field with a stronger surround that disynaptically
inhibits the simple cell, (C) the feed-forward input rate received by the
simple cell, and (D) the simple cell S1. In (A–D) the y -axis represents the
maximum firing rate in spikes/seconds, and the x -axis represents the bar
length in degrees.

FIGURE 7 | Orientation-tuning curves of (A) the simulated simple cell

S1, (B) the simulated simple-like hypercomplex cell, (C) a real simple

cell with length summation (data adapted from Rose, 1977), and (D) a

real simple-like hypercomplex cell (data adapted from Orban et al.,

1979) in response to bars of different lengths. Axes the same as in
Figure 6.

as is observed in the real cells. The same effect was observed for
simple cell S2, but it is not shown here.

Figure 8 demonstrates the orientation-tuning curves of sim-
ple cell S2 in response to gratings of different spatial frequencies
(Figure 8A) and the simple-like hypercomplex cell in response to
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FIGURE 8 | Orientation-tuning curves of (A) the simulated simple cell S2

and (C) a real simple cell with length summation (data adapted from

Vidyasagar and Siguenza, 1985) in response to gratings of different SFs.

(B) OT curves of the simulated simple-like hypercomplex cell in response to

Gabor patches of different SFs. Legends indicate the SF in cpd. In each plot
the y -axis represents the maximum firing rate in spikes/seconds, and the
x -axis represents the orientation of the grating or Gabor patch stimulus in
degrees.

Gabor patches of different SFs (Figure 8B). These OT curves are
compared to those of a real simple cell without end-stopping in
response to gratings of different SFs (Figure 8C). It can be seen for
the model cells that as SF increases OT sharpens, as is observed in
the real cell. Simple cell S1 produced slightly different OT curves
to that seen for simple cell S2 here. However, as is illustrated in
Figures 9B,D, it turns out that the plots of half-width-at-half-
height (HWHH) versus SF for the simple cells S1 and S2 and the
simple-like hypercomplex cell SH still correspond closely to those
observed for real simple cells. Of further note, there is flexibility
with parameters in that the HWHH versus SF curve obtained for
simple cell S1 could look more like that obtained for simple cell
S2 depending on how parameters are selected (simulations not
shown). Figures 9A,C plot HWHH versus bar length for the sim-
ulated cells and for real cells, respectively. It can be seen that for the
simple cells with length summation the HWHH versus bar length
curve flattens out, whereas for the simple-like hypercomplex cell
it decreases until the cell no longer responds to bars of increasing
length.

Next, we simulate the effects of iontophoretic application of
bicuculline, a GABAA antagonist, on length response, SF tuning,
and OT curves (Sillito, 1975; Tsumoto et al., 1979; Vidyasagar,
1984b; Vidyasagar and Mueller, 1994). To do this we simulated the
effect of bicuculline by reducing the inhibitory weights connecting
to the cell of interest by multiplying them by the factor � = 0.1.

Figure 10 shows the simulation results for the effects of bicu-
culline. Figures 10A,E plot the length–response functions of
simple cell S1 and a real simple cell with length summation, respec-
tively. It can be seen that the release from inhibition by bicuculline
injection causes the simple cell to reveal a length–response func-
tion much like that of the orientation-biased LGN field that is
driving it (see Figure 2A), with all the length summation occur-
ring within a shorter length. In our scheme this is due to the
reduced inhibition for bars of longer length due to the strong sur-
round of the LGN field that provides the disynaptic inhibition.
Figures 10B,F plot the length–response functions of a simulated
simple-like hypercomplex cell and a real simple-like hypercom-
plex cell, respectively. Again the length–response function in the
bicuculline case is similar to the length–response function of the
LGN cell that is driving it (see Figure 3A). Figures 10C,G plot
the SF-response functions of simple cell S2 and a real simple cell

FIGURE 9 | Half-width-at-half-height (HWHH) versus bar length and

HWHH versus spatial frequency. HWHH versus bar length curves
produced by (A) the model and (C) real simple cells in response to bars
(Data adapted from Henry et al., 1974 and Orban et al., 1979). In (A,C) the
y -axis represents the HWHH in degrees, and the x -axis represents the bar
length in degrees. HWHH versus SF curves produced by (B) the model in
response to gratings and Gabor patches and (D) real simple cells in
response to gratings (Data adapted from Vidyasagar and Siguenza, 1985). In
(B,D) the y -axis represents the HWHH in degrees, and the x -axis
represents the SF in cpd. Legend – S1: simple cell S1, S2: simple cell S2,
SH: simple-like hypercomplex cell.

with length summation, respectively. It can be seen that blockade
of inhibition causes a broadening of the SF response function.
Figures 10D,H plot the OT curves for the simulated simple cell S2
and a real simple cell, respectively. Here it can be seen that blockade
of inhibition causes broadening of the OT curve. Similar results
to those shown in Figure 10 were observed for all other cell types
and stimulus-type combinations not shown in the figure.

Changes in cortical orientation tuning can potentially happen
also in many experimental situations other than bicuculline appli-
cation, which manipulate the inputs to a striate cell. One recent
instance of this is a study that applied electrical stimulation in the
LGN while recording from the striate cortex (Kara et al., 2002).
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FIGURE 10 | Effects of iontophoretic application of bicuculline.

(A,E) plot the length–response functions of simple cell S1 and a
real simple cell with length summation (Data adapted from Vidyasagar,
1984b) for a bar stimulus of the preferred orientation, respectively. (B,F) plot
the length–response functions of a simulated simple-like hypercomplex cell
and a real simple-like hypercomplex cell (Data adapted from Vidyasagar,
1984b) for a bar stimulus of the preferred orientation, respectively. (C,G) plot

the SF-response functions of simple cell S2 and a real simple cell with length
summation (Data adapted from Vidyasagar and Mueller, 1994) for a grating
stimulus of the preferred orientation, respectively. (D,H) plot the OT curves
for the simulated simple cell S2 for a bar length 1.66˚ and a real simple cell
(Data adapted from Tsumoto et al., 1979), respectively. Control responses are
indicated by solid lines, while responses under the influence of bicuculline are
indicated by dashed lines.

Their rationale was to suppress all cortical activity through the
strong intra-cortical inhibition evoked by the stimulation and thus
be able to study the“raw”feed-forward inputs from the LGN alone.
More recently, Viswanathan et al. (2011), used a variation of Kara
et al.’s original paradigm and recorded from both striate cortex
and the LGN during electrical stimulation in the LGN at a rate of
around 7.75 Hz. They found that orientation sensitivity of LGN
cells was significantly sharpened during the stimulation and also
that there was some reduction of orientation selectivity of layer
4 cortical cells. Figure 11 provides a simulation of these results.
Figures 11G,H show polar response plots of a real LGN cell and a
real simple cell, respectively, during either visual stimulation with
bars (solid line) or both visual stimulation and electrical stimula-
tion of the LGN (dashed line). Figures 11A–F show a simulation
of this kind of data for the S1 simple cell which has had its baseline
tuning set to a broader value by lowering the threshold of the exci-
tatory oriented cortical cells, βe, from 1.15 to 0. To compensate for
the lower threshold the feed-forward weights were also lowered to
the following values: W oe =W oi = 0.34, W ue =W ui = 0.24. This
modified S1 simple cell is referred to here as S1∗. Figures 11A,B
show the responses of the orientation-biased LGN cell that excites,
and the unoriented LGN cell that inhibits, the simple cell S1∗,
respectively. It can be seen that electrical stimulation of the LGN
reduces the response of the LGN to bars and at the same time
sharpens the tuning of the orientation-biased LGN cell to a sim-
ilar extent to the real data in Figure 11G. This occurs as a result
of a “tip of the iceberg” effect due the strong degree of suppres-
sion introduced by electrical stimulations. Figures 11C,D show the
responses of the feed-forward inputs to, and the outputs of, the
S1∗ simple cell, respectively. It can be seen that the feed-forward
tuning is both reduced and broadened as a result of electrical

stimulation, while the output of the S1∗ simple cell is reduced
and only slightly broadened. The S1∗ output response is only
slightly broadened due to the strong effects of the power-law and
intra-cortical interactions.

To explore the role these model components play during elec-
trical stimulation, the power-law was removed (by reducing the
power-law exponent to p = 1) or the intra-cortical input was set to
zero (i.e., W ce =W ci =W se =W si = 0) in Figures 11E,F, respec-
tively. During electrical stimulation cortex appears to operate
in a predominantly subthreshold regime in between stimulation
pulses. This regime may reduce the influence of intracellular exci-
tatory feedback mechanisms (Pei et al., 1994) when a probing
pulse arrives and therefore it is reasonable to assume electrical
stimulation results in a reduced power-law exponent. This idea
is consistent with the simulations where CV increases from 0.16
for the normal response of the S1∗ cell (Figure 11D) to 0.36 for
the S1∗ cell with p = 1 (Figure 11E) when electrical stimulation
is introduced. This magnitude change of 0.20 is consistent with
the real simple cell data in Figure 11H where CV increases by 0.16
from 0.74 to 0.90 when electrical stimulation is introduced. Given
that cortex is largely silenced during electrical stimulation of the
LGN it is also reasonable to assume that the intra-cortical input to
a cell could become negligible (Kara et al., 2002). This is assumed
in Figure 11F, however, it is apparent that for the set of para-
meters defining S1∗ and the stimuli used, the intra-cortical input
does not greatly affect the orientation selectivity when compared
to Figure 11D.

The discrepancy in CV values for the simple cell data in
Figure 11H and the S1∗ simulations in Figures 11D–F result from
the fact that the real cell is more broadly tuned than the model
cell. This is primarily because we sought to make the simplest
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FIGURE 11 | Effects of electrical stimulation in the LGN on orientation

selectivity of LGN and simple cells. (A–F) show simulations for the
simple cell S1∗ (see text) in response to bars of length 4.17˚ either without
or during electrical stimulation of the LGN. (A,B) show the responses of the
orientation-biased and unoriented LGN cells that provide the feed-forward
input to the simple cell, respectively. (C,D) show the responses of the
combined feed-forward input to, and the output of, the S1∗ simple cell,
respectively. (E,F) illustrate the output of the S1∗ simple cell when either
the power-law exponent is reduced to p = 1 (from 1.85) or the intra-cortical
input is set to zero (i.e., Wce =Wci =Wse =Wsi = 0), respectively. (G,H)

demonstrate the responses of a real LGN cell and a real simple cell to bars,
respectively, both with or without electrical stimulation in the LGN (adapted
from Viswanathan et al., 2011). In all subfigures, responses to visual
stimulation alone are indicated by the solid lines, whereas responses to
visual stimulation during electrical stimulation are indicated by the dashed
lines. Moreover, the CVN and CVE values next to each subfigure indicate the
circular variance values calculated from the responses to normal visual
stimulation alone or visual stimulation during electrical stimulation,
respectively.

modification to the S1 simple cell that would create a significant
reduction in tuning during electrical stimulation. Prior to modi-
fication, the S1 simple cell was sharply tuned and so did not show

significant increases in CV with electrical stimulation of the LGN.
Similar broadening of the cortical tuning width is also seen in
the data of Kara et al. (2002), even though the change did not
reach statistical significance, possibly due to the small sample size
(n = 6).

Generally, in our model, electrical stimulation of the LGN
appears to result in broadening of the cortical response by weakly
activating cells tuned to all orientations at the times of electrical
stimulation. This broadening can be further enhanced by reduc-
ing the power-law exponent as described above. However, there
is a trade-off between this broadening effect and the fact that
increasing the strength of electrical stimulation further sharpens
the selectivity of the orientation-biased LGN input which in turn
should sharpen the cortical response. This trade-off depends on
the values of the parameters used.

Vidyasagar (1985, 1987) has proposed that similar to the way
color is coded as a combination of activities in separate broadly
tuned channels, it may be possible to code also for orientation
by creating a simple cell tuned to an arbitrary orientation from
a combination of LGN cells tuned to cardinal orientations. This
possibility is supported by evidence that the distribution of pre-
ferred orientations of cells showing orientation selectivity in the
cat retina (Hammond, 1974; Levick and Thibos, 1980; Leventhal
and Schall, 1983; Schall and Leventhal, 1987), rat retina (Schall
et al., 1987), ferret retina (Vitek et al., 1985), macaque retina (Schall
et al., 1986), and cat LGN (Vidyasagar and Urbas, 1982; Shou and
Leventhal, 1989) demonstrate an overrepresentation of a few ori-
entations, in particular the horizontal, the vertical or the radial
(“radial” being along the line joining the center of area centralis or
fovea to the ganglion cell location). Thus if subcortical orientation
selectivity is critical for cortical selectivity for this parameter, it is
coded precisely in the way that color is coded – i.e., in a limited
number of broadly tuned channels so as not to forsake resolution
and sensitivity for the sake of discrimination. This tendency for
overrepresentation of a few cardinal orientations is also reflected
in the striate (Leventhal, 1983; Li et al., 2003) and extrastriate
(Leventhal et al., 1984) areas of the cat and in the ferret stri-
ate cortex (Chapman and Bonhoeffer, 1998; Coppola et al., 1998;
Grabska-Barwinska et al., 2009). Given that most orientations are
represented at each retinotopic coordinate in the LGN, cortical
cells could either be driven by orientation-biased LGN cells with
the same orientation preference as the cortical cell or by a combi-
nation of signals tuned optimally to different cardinal orientations
or both.

Here we present a proof-of-concept simulation of such a“cardi-
nal” construction of cortical orientation tuning. For three or four
cardinal orientations it is straightforward with our model to create
all orientations. For only two cardinal orientations, say vertical and
horizontal, at a first glance there appears to be difficulty in resolv-
ing the orientation of oblique orientations symmetric about one
or the other cardinal axes, but this ambiguity can be resolved by
modeling LGN cells as having both an orientation bias and a direc-
tion bias. Such direction bias has also been observed in vivo for
LGN cells (e.g., see figures in Vidyasagar and Urbas, 1982; Xu et al.,
2002). Introduction of a direction bias and providing a simulation
with only two cardinal orientations can be done by modifying
our present model to make the LGN or their input retinal cells at
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FIGURE 12 | “Cardinal” construction of 18 simple cell

orientation-tuning curves tuned to the full range of orientation

preferences by linearly combining orientation-biased LGN

cells with only four orientation biases. Orientation-tuning
curves were obtained by stimulating with a bar of length 4.16˚.
(A) The orientation-tuning curves of the four LGN cells with orientation

bias. The unoriented LGN response in (B) was subtracted from a linear
combination of the orientation-biased LGN cells to produce the
orientation-tuning curves of the feed-forward input to the simple cells in (C).
(D) The tuning curves of the simple cells obtained after recurrent competition.
For the sake of clarity, tuning curves alternate between solid, dashed, and
dash-dot lines.

least weakly direction selective, as for example in Reichardt (1969)
detectors.

Instead, here in Figure 12 we show a simulation of the simple
cell type S1, where the orientation tuning of cortical cells over the
full range of orientations can be produced by linear combination
of LGN RFs with only four distinct orientation biases. We chose to
simulate four orientation biases equally spaced within 180˚ as this
includes the vertical and horizontal biases of LGN cells seen often
in the data. The simulation of simple cell S1 was modified such
that only 4 LGN orientation biases are encoded, as opposed to 18.
A given simple cell orientation preference was determined by a
linear combination of the four LGN orientation-biased cell out-
puts. The linear combination weights of the orientation-biased
LGN cells were determined using an optimization method such
that feed-forward tuning curves look like the feed-forward tuning
of the original S1 cell.

4. DISCUSSION
4.1. MECHANISMS OF ORIENTATION SELECTIVITY OF SIMPLE CELLS
Here we have presented a model describing how the orientation-
bias of a single LGN field can help to create OT, SF, and length–
response properties of simple and simple-like hypercomplex cells.
Although additional mechanisms such as excitatory convergence
(Hubel and Wiesel, 1962; Wörgötter and Koch, 1991; Reid and

Alonso, 1995; Finn et al., 2007), projection of spatially offset
ON and OFF LGN cells (Schiller, 1982; Sherk and Horton, 1984;
Hirsch, 2003), or opponent inhibition (Troyer et al., 1998, 2002;
Hirsch,2003; Hirsch et al., 2003) are likely to influence the response
properties of simple cells we have presented the simplest model
involving LGN orientation bias in a single LGN field required to
explain the data of interest. This model involved excitation of a
simple cell by an anisotropic LGN field and disynaptic inhibition
by an unoriented LGN field combined with recurrent excita-
tion and inhibition between oriented simple cells. The oriented
LGN field gives untuned responses at low spatial frequencies but
greater tuning to preferred orientations for higher spatial frequen-
cies. Subsequent disynaptic inhibition in the cortex effectively
removes the response to the low spatial frequencies leaving only
the response to preferred orientations at high spatial frequencies.
Recurrent cortical excitation and inhibition then acts to further
sharpen OT. Evidence exists for both the oriented and unoriented
or weakly oriented inhibitory cells implemented in the model.
Specifically, inhibitory cells in layer 4 were either of the oriented
type (Hirsch et al., 2003) or showing only weak orientation biases
(Hirsch et al., 2003; Nowak et al., 2008).

We have also shown that experimental manipulations that alter
the balance between excitation and inhibition, in either the input
to the cortex or intracortically, or at both sites, can be simulated in
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our model. Changes in response properties of LGN and striate cells
brought about by either iontophoretic application of bicuculline
near cortical cells or electrical stimulation in the LGN were suc-
cessfully simulated. The results of the electrical stimulation studies
can potentially also be the basis for more detailed modeling using
spiking neurons to test potential underlying mechanisms.

For the sake of parsimony, in our simulations we have focused
on simulating only ON LGN cells, but our simulations are consis-
tent with evidence for the projection of both ON and OFF cells to
a single simple cell (Sherk and Horton, 1984; Hirsch, 2003). Just
as an ON anisotropic LGN cell excites the simple cell and an ON
isotropic LGN cell disynaptically inhibits a simple cell in the model,
it is also possible for an OFF anisotropic LGN cell and an OFF
isotropic cell to do the same. The phase variation of the ON/OFF
envelope (DeAngelis et al., 1995) could also be included in the
model through greater consideration of the temporal properties
of ON and OFF cells.

Hebbian learning,or spike-timing-dependent-plasticity (STDP;
Song et al., 2000; Bartsch and van Hemmen, 2001) mechanisms
could help to ensure that these ON and OFF projections do not
coincide with the same spatial co-ordinate, but instead spatially
adjacent co-ordinates. This is expected since light never spatially
correlates with dark in natural images. It is also possible to create
oriented simple cells of all different spatial phases by combin-
ing at least 2, and not necessarily many more, spatially offset ON
and OFF cells along the spatial axis orthogonal to the preferred
orientation-bias of the ON and OFF LGN cells.

That being said, Hebbian learning is also likely to support the
formation of excitatory convergence. For example, spatially offset
anisotropic ON LGN cells aligned along the axis of their preferred
orientation are likely to be correlated when activated by light edges
and thus connect to the same simple cell. This would lead to an
excitatory convergence as originally proposed by Hubel and Wiesel
(1962). This is also supported by the elongated clustering of LGN
afferents seen within orientation columns of the ferret (Chapman
et al., 1991) and the regular alignment of LGN ON and OFF fields
seen in cat simple cell subregions (Reid and Alonso, 1995; Alonso
et al., 2001; Jin et al., 2011). However these studies do not provide
a satisfactory explanation for their own observation and those of
others (Henry et al., 1978; Bullier et al., 1982; Pei et al., 1994) that
the aspect ratios of simple cell RFs obtained from two-dimensional
noise stimuli or short bars are much shorter than the region of
apparent excitatory facilitation seen in length–response functions.
Our model not only explains this through the disinhibition along
the length axis discussed earlier under Results, but also shows that
orientation bias of LGN cells can reduce the need for excitatory
convergence. In particular, orientation-bias of a single LGN cell
can then be expected to play a significant role in the central visual
field where excitatory convergence needs to be minimized to pro-
vide a high resolution representation of the visual scene. Moreover,
as pointed out by Ringach (2011), Jin et al.’s (2011) recent find-
ings suggest substantial constraint of the cortical cells’ inputs by
asymmetries in LGN RFs.

The above discussion also relates to the problem of why simple
cell RFs can appear longer than LGN RFs. As observed in our sim-
ulations of simple cells without end-stopping, disinhibition of the
anisotropic LGN RF by the isotropic LGN RF for longer bars shows

that our ALD-RM simple cell can uniquely encode bar length, not
just to the edge of the centers of the LGN RFs but to the very edge
of the LGN RF surround. This indicates that length summation
properties (thought to be reflective of “larger” RFs) can occur by
a mechanism other than just excitatory convergence. As can be
seen in Figure 2C, the response of the simulated cell S1 increases
with increasing bar length up to 5˚, whereas the green excitatory
region in the S1 pseudo RF in Figure 1Bii extends only over 1˚.
This indicates that the pseudo-RFs are only a partial description
of the simulated cells’ response function.

Another key question one might have regarding whether
orientation-bias of single LGN cells can really have an influence on
simple cell OT is: how can the oriented LGN cells produce the full
range of orientations seen in primary visual cortex? As mentioned
in the results (Figure 12), Vidyasagar (1985, 1987) has proposed
a possible solution to this question, by coding for orientation by
creating a simple cell tuned to an arbitrary orientation from a com-
bination of LGN cells biased toward cardinal orientations. If the
full range of cortical orientation preferences are thus built from
the inputs from a limited number of subcortical channels, one can
expect this to be reflected in the distribution of preferred orienta-
tions in the striate cortex. Such a bias toward cardinal orientations
is in fact observed in both single cell (Leventhal, 1983; Li et al.,
2003) and optical imaging (Chapman and Bonhoeffer, 1998; Cop-
pola et al., 1998; Wang et al., 2003) studies of the primary visual
cortex. At the same time, there is the possibility that construction
of non-cardinal orientations from cardinal orientations may not
be necessary if there is a precise match of orientation distributions
among cortical simple cells and the orientation distributions in
the retina at the same retinotopic co-ordinate as at least one study
suggests (Schall et al., 1986). Our model is consistent with such
a match between cortical and retinal distributions of preferred
orientations. In any case, it is unclear how the excitatory conver-
gence model ala Hubel and Wiesel can account for the presence of
radial biases in the cortical data, given that their model assumes
isotropy of the LGN responses. Aligned convergence of afferents
would have to somehow respect the location specific orientation
distributions seen in the retina and LGN while actually ignoring
the same biases in generating orientation sensitivity. Furthermore
such developmental consideration has also to be valid across a
number of different species.

The emergence of the full range of orientations from a lim-
ited number of broadly tuned input channels can also form the
framework for the known columnar architecture of the cortex
(Vidyasagar et al., 1996). A full simulation of that is in progress,
but it is beyond the scope of the present paper. An additional
simple cell property that we have not simulated here is direction
selectivity. In the same way that biases to (cardinal) orientations
among LGN cells can construct sharp orientation selectivity in cor-
tical simple cells with their optimal orientations distributed across
the full range, biases to (cardinal) directions in the LGN can con-
struct a range of direction selectivities in simple cells. Moreover,
as hinted at in the second last paragraph of the results, the combi-
nation of bias to (cardinal) orientations and (cardinal) directions
in the LGN could be used to construct a combined coding of a
full range of orientation and direction selectivities among simple
cells.
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4.2. COMPARISON TO OTHER COMPUTATIONAL MODELS
In our simulations, we have applied a power-law spike-rate
response function and recurrent excitation and inhibition to
sharpen the OT of simple cells. We were also able to obtain simi-
lar results (not shown here) if we still allowed for excitation of a
simple cell by an anisotropic LGN cell and disynaptic inhibition
by an isotropic LGN cell, but combined these features with only
thresholding and a power-law spike-rate response function. How-
ever, this required much higher thresholds and had less flexibility
in obtaining the desired responses than were able to be obtained
with cross-orientation excitation and inhibition. Finn et al. (2007)
employed a thresholding and power-law transfer function mecha-
nism to explain contrast invariance in simple cells without needing
a dependence on cross-orientation inhibition. The input to their
model followed the excitatory convergence model, consisting of
spatially aligned unoriented LGN cells. Although more local, the
alternative bottom-up input we have proposed would still pro-
vide a similar description of OT and contrast invariance. Similarly,
contrast invariance demonstrated for models based on the com-
bination of excitatory convergence and recurrent excitation and
inhibition (i.e., the RM; Somers et al., 1995; Teich and Qian, 2006)
would still be present if simulations were done with our alternative
input.

Teich and Qian (2006) compared simulations of the RM involv-
ing oriented cells of only one spatial phase (single-phase RM)
and the RM involving oriented cells with different spatial phases
(multi-phase RM). For the sake of simplicity we have effectively
simulated a single-phase RM (with different bottom-up inputs),
but our results would still hold for the multi-phase RM. Teich and
Qian (2006) suggested that the multi-phase RM is a model for
complex cells and that it needs to be modified to include oppo-
nent inhibition to provide a description of simple cells. We found
that our version of the single-phase RM presented here still pro-
vides a good description of simple cells. This is not only based on
the response properties investigated but we also found that F1/F0
ratios (Movshon et al., 1978a,b, 2006) for the simulated simple
cells were always greater than 1. This makes sense as our version
of the single-phase RM is not influenced by stimuli of any phase
other than the cell’s preferred phase.

With regard to model complexity we have sought to present
a simple rate-based neuron network to explain the properties
of interest. The degree of model complexity is similar to that
employed by Teich and Qian (2006) who compared the RM
(Somers et al., 1995) and the modified feed-forward model (MFM;
Troyer et al., 1998), and a hybridization of the two. All of these
models relied on excitatory convergence in the input. Some mod-
els have considered spiking neurons (Somers et al., 1995) but the
complexities associated with compartmental neurons are often
ignored. Models that consider networks in more detail are often
rate-based and aim to describe properties of orientation selectiv-
ity, and orientation and ocular dominance columns (Erwin and
Miller, 1998; Kayser and Miller, 2002). Often these models do not
include the laminar circuits of cortex which are likely to be impor-
tant for modeling the true circuitry of various mechanisms, such
as cross-orientation interactions. Here and in other models, cross-
orientation mechanisms are modeled with the functional idea of
Mexican hat cross-orientation excitation and inhibition because

the true underlying circuitry is not well understood. In this con-
text our model represents a stepping stone for considering models
with more detailed cell types and anatomical circuitry.

The main advantage of our ALD-RM model is that it consid-
ers the orientation bias of LGN cells. No other model does this,
since all computational models of cortical simple cells to date had
assumed that the LGN RFs are isotropic. We have based our model
on the orientation biases of LGN cells and their dependence on
the SF of the stimulus and also the length–response functions of
LGN cells. In doing so, not just orientation selectivity of cortical
simple cells, but also SF and length selectivities of cortical cells
simply fall out of the model. To further understand how the LGN
orientation bias specifically contributes to orientation selectivity
of simple cells, Figures 6C and 11C give a feel for the orientation
selectivity produced by the combination of feed-forward excita-
tion by a biased LGN field and inhibition by an unbiased LGN
field. Comparing these Figures to Figures 6D and 11D illustrates
the additional influence cross-orientation mechanisms (Somers
et al., 1995) and the power-law transfer function (Finn et al.,
2007) have on the orientation selectivity of the simple cell. It
can be seen that the orientation selectivity of the feed-forward
LGN input is quite strong, thus requiring less influence from the
other mechanisms. However, the other mechanisms could be made
more influential by changing the parameters. The key data that the
power-law and the cross-orientation mechanisms cannot explain
on their own are the SF and length–response properties which
depend largely on the feed-forward LGN input used in our model.
The combination of excitatory convergence with the power-law
and cross-orientation mechanisms can explain the SF data, but
would require additional cortical spatial competition to describe
length–response data. The same can be said of current models that
combine excitatory convergence and opponent inhibition (Troyer
et al., 1998), although opponent inhibition could be designed such
that it has similar effects on length–response properties as the
excitatory and inhibitory LGN fields have in our ALD-RM model.

Our model is the first to simulate the LGN stimulation exper-
iments of Viswanathan et al. (2011). The only simulations that
consider electrical stimulation in the retina or the LGN are related
to retinal prostheses, but they assume unbiased retinal RFs (Green-
berg et al., 1999). Models to simulate blockade of GABAA include
studies on the striate cortex by Somers et al. (1995) and Troyer
et al. (1998). Models that combine excitatory convergence and
cross-orientation mechanisms (Somers et al., 1995) or oppo-
nent inhibition (Troyer et al., 1998) can explain the effects of
GABAA blockade on orientation selectivity, but such models do
not explain the effects of GABAA blockade on length–response
functions because they were not designed to do so. Our model is
able to achieve this because it does not ignore the known length–
response properties of the LGN fields that excite and inhibit the
simple cell. No additional, undocumented, cortical mechanisms
are necessary to explain this property.

CONCLUSION
We have shown that a parsimonious computational model of sim-
ple and simple-like hypercomplex cells receiving excitatory feed-
forward input from only a single orientation-biased LGN field
and inhibitory input from another LGN field, can describe their
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orientation, SF and length–response functions, without assum-
ing any spatially aligned convergence of LGN RFs. This has wider
implications for the formation of orientation and ocular dom-
inance columns and the representation of the visual scene in
primary visual cortex.
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